Blue Luminescent Graphene Quantum Dots
Blue Luminescent Graphene Quantum Dots‚ Solution‚ CAS NO.: 7440-40-0
Product Detail
CAS NO.: 7440-40-0
Graphene quantum dots (GQDs) are nanoscale fragments of graphene that, unlike graphene, demonstrate robust quantum confinement and edge effects. This, combined with the ability to control their size, shape, and functionality, gives GQDs a number of unique properties, such as strong photoluminescence. Their relation to graphene gives GQDs superior electrical, thermal, and mechanical properties. And, unlike metal or silicon quantum dots, GQDs are photo stable and biocompatible. All this makes GQDs ideal for a number of state-of-the-art applications, including:
- Optical brightening
- Photovoltaics
- LEDs
- Security tagging
- Drug delivery
- Markers for bioimaging
- Cellular imaging
- Batteries
- Fluorescent polymers
- Antibacterial systems
- Sensors
- Flash memory devices
High-quality blue luminescent graphene quantum dots from ACS Material are available in concentrations up to 20mg/ml in various solvents, including DMF, ethanol, IPA, NMP, or water. These solutions emit blue light (460nm) when excited with a 365nm UV beam. Contact us today for more information about this or any of our other advanced nanomaterials. Trust ACS Material for all your advanced research material needs.
Product No. | Product Name | Type | Carrier | Standard Concentration | Maximum Concentration | Size |
---|---|---|---|---|---|---|
GNQD0101 | Blue Luminescent GQDs | Solution | Water | 1 mg/ml | 20 mg/ml | 100ml |
GNQD0131 | Eth | |||||
GNQD0151 | Blue Luminescent GQDs Powder | Powder | - | - | - | 100mg |
GNQD0201 | Aminated GQDs | Solution | Water | 1 mg/ml | 20 mg/ml | 100ml |
GNQD0221 | Aminated GQDs Powder | Powder | - | - | - | 100mg |
GNQD0301 | Carboxylated GQDs | Solution | Water | 1 mg/ml | 20 mg/ml | 100ml |
GNQD0701 | Carboxylated GQDs Powder | Powder | - | - | - | 100mg |
GNQD0401 | Chlorine Functionalized GQDs | Solution | Water | 1 mg/ml | 2 mg/ml | 100ml |
GNQD0511 | Green GQDs | Solution | Eth | 1 mg/ml | 10 mg/ml | 100ml |
GNQD0501 | Green GQDs | Solution | Water | 1 mg/ml | 10 mg/ml | 100ml |
GNQD0601 | Hydroxylated GQDs | Solution | Water | 1 mg/ml | 2 mg/ml | 100ml |
GQDW0101 | Imidazole-Modified GQDs | Solution | Water | 1 mg/ml | 10 mg/ml | 100ml |
GQD001A1 | Imidazole-Modified GQDs Powder | Powder | - | - | - | 100mg |
GQD001A5 | 500mg | |||||
GQD00101 | 1g |
-- New added products!
* Shelf life
- Carboxylated and Green GQDs: ~ 3 months;
- the rest of GQDs products:~ 6 months;
- recommand to use them as soon as possible after open the bottle.
Please contact us if you need products other than the standard concentration and carriers listed in the table.
Preparation Method
Preparation Method: Bottom-up method
Composition/Information on Ingredients
Elemental compositions of graphene quantum dots
H (wt %) | C (wt %) | O (wt %) |
4 | 46 | 50 |
Characterization & Analysis
Quantum Dots Size | <15 nm |
Thickness | 0.5-2 nm |
Purity | >80% |
Standard Concentration | 1 mg/ml |
The solutions of this GQDs emits blue light (460 nm) when excited with 365 nm UV beam. (reference only, actual value may vary)
We can provide this product with a concentration up to 20 mg/ml.
TEM image (1) of ACS Material Graphene Quantum Dots
TEM image (2) of ACS Material Graphene Quantum Dots
The solutions of GQDs emit blue light (460 nm) when excited with 365 nm UV beam. (reference only, actual value may vary)
Conditions for safe storage:
Please use it as soon as possible and store at 4-24 oC in a tightly sealed container. Store in same type of container (glass/plastic) as shipped. Do not freeze.
Application Fields
Photovoltaic devices‚ cellular imaging and drug delivery.
Disclaimer: ACS Material LLC believes that the information on our website is accurate and represents the best and most current information available to us. ACS Material makes no representations or warranties either express or implied, regarding the suitability of the material for any purpose or the accuracy of the information listed here. Accordingly, ACS Material will not be responsible for damages resulting from use of or reliance upon this information.
Research Citations of ACS Material Products
- Li, Changzheng, and Yanan Yue. “Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths.” Nanotechnology, vol. 25, no. 43, Sept. 2014, p. 435703., doi:10.1088/0957-4484/25/43/435703.
- Bhatnagar, Deepika, et al. “Graphene quantum dots FRET based sensor for early detection of heart attack in human.” Biosensors and Bioelectronics, vol. 79, 2016, pp. 495–499., doi:10.1016/j.bios.2015.12.083.
- Liu, Yang, et al. “Electro-Optical switching of liquid crystals sandwiched between ion-Beam-Spurted graphene quantum dots-Doped PEDOT:PSS composite layers.” Optics Express, vol. 23, no. 26, 2015, p. 34071., doi:10.1364/oe.23.034071.
- Bhatnagar, Deepika, et al. “Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack.” International Journal of Biological Macromolecules, vol. 95, 2017, pp. 505–510., doi:10.1016/j.ijbiomac.2016.11.037.
- Nieto, Andy, et al. “Graphene reinforced metal and ceramic matrix composites: a review.” International Materials Reviews, vol. 62, no. 5, 2016, pp. 241–302., doi:10.1080/09506608.2016.1219481.
- Bok, Chang Han, et al. “Operating mechanisms of highly-Reproducible write-Once-Read-Many-Times memory devices based on graphene quantum dot:Poly(Methyl silsesquioxane) nanocomposites.” Applied Physics Letters, vol. 110, no. 1, Apr. 2017, p. 013301., doi:10.1063/1.4973358.
- Kim, Do Hyeong, et al. “Highly-Reproducible nonvolatile memristive devices based on polyvinylpyrrolidone: Graphene quantum-Dot nanocomposites.” Organic Electronics, vol. 51, 2017, pp. 156–161., doi:10.1016/j.orgel.2017.09.005.
- Gupta, Shagun, et al. “Ultrasensitive transglutaminase based nanosensor for early detection of celiac disease in human.” International Journal of Biological Macromolecules, vol. 105, 2017, pp. 905–911., doi:10.1016/j.ijbiomac.2017.07.126.
- Ooi, Poh Choon, et al. “Reduced graphene oxide preparation and its applications in solution-Processed write-Once-Read-Many-Times graphene-Based memory device.” Carbon, vol. 124, 2017, pp. 547–554., doi:10.1016/j.carbon.2017.09.004.
- Choi, Hwan Young, et al. “Organic electronic synapses with pinched hystereses based on graphene quantum-Dot nanocomposites.” NPG Asia Materials, vol. 9, no. 7, 2017, doi:10.1038/am.2017.133.
- Ooi, Poh Choon, et al. “Fabrication of transparent bistable switching memory device using plasmapolymerized hexamethyldisiloxane layers with embedded graphene quantum dots.” Thin Solid Films, vol. 645, 2018, pp. 45–50., doi:10.1016/j.tsf.2017.10.044.
- Wang, Changhong, et al. “Computing: Memristive Devices with Highly Repeatable Analog States Boosted by Graphene Quantum Dots.” Small, vol. 13, no. 20, 2017, doi:10.1002/smll.201770110.
- Bakar, Elyani Abu, Mohd Ambri Mohamed, Poh Choon Ooi, MF Mohd Razip Wee, Chang Fu Dee, and Burhanuddin Yeop Majlis. "Fabrication of indium-tin-oxide free, all-solution-processed flexible nanogenerator device using nanocomposite of barium titanate and graphene quantum dots in polyvinylidene fluoride polymer matrix." Organic Electronics 61 (2018): 289-295.
- Ooi, Poh Choon, MF Mohd Razip Wee, Chang Fu Dee, Chi Chin Yap, Muhammad Mat Salleh, and Burhanuddin Yeop Majlis. "Fabrication of transparent bistable switching memory device using plasmapolymerized hexamethyldisiloxane layers with embedded graphene quantum dots." Thin Solid Films 645 (2018): 45-50.
- Sung, Sihyun, Chaoxing Wu, Hyun Soo Jung, and Tae Whan Kim. "Highly-stable write-once-read-many-times switching behaviors of 1D–1R memristive devices based on graphene quantum dot nanocomposites." Scientific reports 8, no. 1 (2018): 12081.